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Knowledge of the genetic basis of schizophrenia has markedly 
improved in the past five years1. We now know that much 
of the genetic basis and heritability of schizophrenia is due 

to common variation2,3. However, identifying ‘actionable’ genes in 
sizable studies4,5 has proven difficult, with a few exceptions6–8. For 
example, there is aggregated statistical evidence for diverse gene 
sets including genes expressed in brain or neurons3,5,9, genes highly 
intolerant of loss-of-function variation10, genes involved in synap-
tic function11 (hereafter referred to as synaptic genes), genes whose 
mRNA bind to FMRP12 and glial genes13 (Supplementary Table 1).  
Several gene sets have been implicated by both common- and rare-
variant studies of schizophrenia, and this convergence strongly 
implicates these gene sets in the pathophysiology of schizophrenia. 
However, the gene sets in Supplementary Table 1 often contain hun-
dreds of functionally distinct genes that do not immediately suggest 
reductive targets for experimental modeling.

Connecting the genomic results to cellular studies is crucial, as 
it would allow us to prioritize for cells that are fundamental to the 
genesis of schizophrenia. Enrichment of schizophrenia genomic 
findings in genes expressed in macroscopic samples of brain tissue 
has been reported3,14,15, but these results are insufficiently specific to 
guide subsequent experimentation.

A more precise approach has recently become feasible. Single-cell 
RNA sequencing (scRNA-seq) can be used to derive empirical tax-
onomies of brain cell types. We thus rigorously compared genomic 
results for schizophrenia to brain cell types defined by scRNA-seq. 
Our goal was to connect human genomic findings with the specific 
brain cell types defined by gene expression profiles, and to ascertain 
what specific brain cell types the common-variant genetic findings 
for schizophrenia best ‘fit’ to. A schematic of our approach is shown 
in Fig. 1.

Results
Cell-type specificity of gene expression. We assembled a super-
set of brain scRNA-seq data from the Karolinska Institutet (KI; 
Supplementary Tables 2 and 3). Brain regions in the KI superset 
included the neocortex16, hippocampus16, hypothalamus17, striatum 
and midbrain18, as well as samples enriched for oligodendrocytes, 
dopaminergic neurons and cortical parvalbuminergic interneurons 
(total of 9,970 cells; Fig. 1c). These data were generated using iden-
tical methods from the same labs, with unique molecular identi-
fiers that allowed for direct comparison of transcription across 
regions. Quality control and alignment are described elsewhere16. 
We did not identify important batch effects (Supplementary Fig. 1).  
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On the basis of the scRNA-seq data and subsequent clustering 
analysis, each cell was assigned to a level 1 classification (for exam-
ple, pyramidal cell, microglia or astrocyte). Level 2 classifications 
were subtypes of a level 1 grouping (for example, medium spiny 
neurons expressing Drd1 or Drd2). Clustering was based on pat-
terns of correlations across hundreds of genes and not on single 
markers. After clustering, cell-type identities were derived using 
known expression patterns, histology and/or molecular studies16–18 
(Supplementary Table 2). The KI mouse superset identified 24 level 
1 brain cell types (Supplementary Fig. 2) and 149 level 2 cell types 
(all subgroupings of level 1), which were far more than any other 
brain scRNA-seq or single-nucleus RNA-seq (snRNA-seq) dataset 
presently available (Fig. 1a).

For each scRNA-seq and snRNA-seq dataset, we estimated the 
specificity of each gene and cell type. This measure represents 
the proportion of the total expression of a gene found in one cell 
type as compared to that in all cell types (i.e., the mean expression 
in one cell type divided by the mean expression in all cell types).  
If the expression of a gene is shared between two or more cell types, 
it will get a lower specificity measure. For example, Drd2 was highly 
expressed in MSNs, adult dopaminergic neurons and hypothalamic 
interneurons, and its specificity measure in MSNs was 0.17; how-
ever, Drd2 was in the top specificity decile for MSNs (Fig. 1b). Fig. 1c  
shows cell-type specificity for seven genes with known expression 
patterns. Because expression was spread over several cell types, the 

pan-neuronal marker Atp1b1 had lower specificity than Ppp1r1b 
(DARPP-32, an MSN marker), Aif1 (a microglia marker) or Gfap 
(an astrocyte marker).

Cell-type specificity of schizophrenia genetic associations. For 
each cell type, we ranked the expression specificity of each gene into 
groups (deciles or 40 quantiles). The underlying hypothesis was 
that if schizophrenia was associated with a particular cell type, then 
more of the genome-wide association signal would be concentrated 
in genes with greater cell-type specificity. For example, we plotted 
the enrichment of single-nucleotide polymorphism (SNP) heritabil-
ity for schizophrenia and human height in the cell-type specificity 
deciles for MSNs and found a positive relationship for schizophre-
nia, but no relationship with human height (Fig. 1d,e). To ensure 
rigor, we required that two different statistical methods (LDSC9 and 
MAGMA19) each give strong evidence for connecting schizophre-
nia genome-wide association studies (GWAS) to a cell type. These 
two methods are based on different assumptions and algorithms. 
Linkage disequilibrium score regression (LDSC) assessed enrich-
ment of the common SNP heritability of schizophrenia in the most 
cell-type-specific genes. MAGMA evaluated whether gene-level 
genetic association with schizophrenia linearly increased with cell-
type expression specificity. Both methods accounted for confound-
ers like gene size and linkage disequilibrium in different ways. We 
required that both methods give similar results after correcting for 
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Fig. 1 | Specificity metric calculated from single-cell transcriptome sequencing data can be used to test for increased burden of schizophrenia-SNP 
heritability in brain cell types. a, Comparison of level 2 cell-type categories and number of cells subjected to snRNA-seq or scRNA-seq from brain tissue. 
Plum-colored circles are mouse studies, and blue circles are human studies. The number of different tissues is reflected in the size of the circle (see 
Supplementary Table 2 for citations). AIBS, Allen Institute for Brain Science; KI, Karolinska Institutet. b, Histogram of specificity metric (SMSN,KI) for MSNs 
from the KI superset level 1. Colored regions indicate deciles (the brown region contains the genes most specific to MSNs). Specificity value for dopamine 
receptor D2 (Drd2, SMSN,KI,Drd2 =  0.17) is indicated by the arrow. c, Schematic highlighting the brain regions sampled in the KI dataset in blue. d, Specificity 
values in the KI level 1 dataset for a range of known cell type markers. Embr., embryonic; Hypoth., hypothalamic. e, Enrichment of schizophrenia-SNP 
heritability in each of the specificity deciles for MSNs (calculated using LDSC). Color of dots corresponds to regions of the specificity matrix in b. The light 
blue dot (marked “X”) represents all SNPs that map onto named transcripts that are not MGI-annotated genes or that map onto a gene which does not 
have a 1:1 mouse:human ortholog. The dark blue dot (marked “N”) represents all SNPs that map onto genes not expressed in MSNs. Blue line shows the 
linear regression slope fitted to the enrichment values. f, Enrichment of height-SNP heritability in each of the specificity deciles for MSNs. Colors as in e.  
In e and f, error bars indicate the 95% confidence intervals.
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multiple comparisons to minimize the chance of a spurious con-
clusion. As described in the Methods, we evaluated and excluded 
multiple potential threats to the validity of these analyses.

To identify the brain cell types that were associated with schizo-
phrenia, we used the largest available GWAS of schizophrenia, 
CLOZUK, which identified ~140 genome-wide significant loci in 
40,675 cases and 64,643 controls20. We first compared the CLOZUK 
results to those in the GTEx database (RNA-seq analysis of macro-
scopic samples from multiple human tissues)21 by using MAGMA 
and confirmed3 that smaller schizophrenia genome-wide associa-
tion P values were substantially enriched in the brain and pituitary 
(Supplementary Fig. 3).

We evaluated the relation of the CLOZUK genome-wide associa-
tion schizophrenia results to the 24 KI level 1 brain cell types. Both 
LDSC and MAGMA analyses strongly highlighted only four cell 
types: hippocampal CA1 pyramidal cells, striatal MSNs, neocortical 
somatosensory pyramidal cells and cortical interneurons (Fig. 2a  
and Supplementary Figs. 4 and 5). Each exceeded a Bonferroni 
significance level by several orders of magnitude. The results were 
not pan-neuronal, as multiple other types of neurons did not show 
enrichment. Schizophrenia risk was greater in mature cells than in 
embryonic or progenitor cells. We extended the analysis to 149 KI 
level 2 cell types (subtypes of level 1 cells): for hippocampal CA1 
pyramidal cells, both major subgroups were significant; for the 

striatum, MSNs expressing Drd2, MSNs expressing Drd1 and/or 
Drd1, and striatal Pvalb-expressing interneurons were consistently 
significant; and for neocortical somatosensory pyramidal cells, cor-
tical layers 2/3, 4, 5 and 6 were significant (Supplementary Fig. 6). 
The cortical level 1 interneuron signal appeared to result from four 
interneuron subcategories, all of which expressed Reln.

Additional analyses showed that these results were not influ-
enced by the total number of molecules detected per cell type or 
by total number of cells per cell type (Supplementary Table 3).  
We conducted null simulations and confirmed that there was no 
type 1 error inflation (Supplementary Fig. 7). We also applied an 
alternative approach based on differential expression22 and rep-
licated the association of MSNs, pyramidal CA1 and neocortical 
somatosensory pyramidal cells with schizophrenia by using a third 
method (Supplementary Fig. 8). These additional analyses sug-
gested the robustness of our results.

We next evaluated whether these results were specific to schizo-
phrenia or whether they resulted from some feature that was com-
mon across human traits. Heat maps of KI level 1 enrichment P values 
for genome-wide association results from eight studies of human 
complex traits are depicted in Fig. 2b. Seven studies evaluated com-
mon-variant associations for brain-related diseases or traits with  
≥ 20,000 cases and ≥ 10 genome-wide significant associations. Human 
height was included as a non-brain-related comparator. The results  
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Fig. 2 | Evaluation of enrichment of common-variant CLOZuK schizophrenia GWAS results in the Ki brain scRNA-seq dataset from mouse. a, KI level 1 
brain cell types. Analyses from both LDSC and MAGMA show enrichment for pyramidal neurons (somatosensory cortex and hippocampus CA1), striatal 
MSNs and cortical interneurons. The black line is the Bonferroni significance threshold (P <  0.05/((24 +  149) ×  8)). b, Heat map of association P values 
of diverse human genome-wide association with KI level 1 mouse brain cell types using MAGMA (left) and LDSC (right). Bonferroni-significant results 
are marked with red borders (P <  0.05/((24 +  149) ×  8)). Total number of cases and controls used in the GWAS are shown in the top bar plots, where 
numbers in red indicate the amount of genome-wide significant loci identified. The CLOZUK results do not generalize indiscriminately across human 
diseases or traits. In the more-sensitive MAGMA analysis, major depressive disorder (MDD) is primarily enriched in cortical interneurons and embryonic 
midbrain neurons, unlike in schizophrenia. Similar, but nonsignificant, trends can be observed using LDSC.

NATuRE GENETiCS | VOL 50 | JUNE 2018 | 825–833 | www.nature.com/naturegenetics 827

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.

http://www.nature.com/naturegenetics


Articles NATuRe GeNeTicS

from the earlier Psychiatric Genomics Association (PGC) GWAS of 
schizophrenia3 were similar to those from CLOZUK. Although we 
observed cell types being enriched in other sets, none had the spe-
cific signal observed in the two schizophrenia sets. For example, for 
major depressive disorder, we found that GABAergic interneurons, 
embryonic midbrain neurons and dopaminergic interneurons were 
the most enriched cell types. For each cell type, we tested whether 
the enrichment observed in other GWAS was significantly different 
from that in CLOZUK. We observed no significant difference for 
SCZ2 (a subset of CLOZUK) and years of education, but all of the 
other studies contained significantly different cell-type enrichments 
(Supplementary Fig. 9).

Replication of results in additional single-cell datasets. We repli-
cated most of the findings in independent scRNA-seq and snRNA-
seq mouse brain studies. We found significant enrichment for 
schizophrenia in hippocampal CA1 pyramidal cells, neocortical 
pyramidal cells, cortical interneurons (although not in all datasets) 
and MSNs23–26. We also saw enrichment in pyramidal neurons from 
CA3 and dentate gyrus granule cells (Supplementary Fig. 10a–d). 
Replication of our results in other external datasets again highlights 
the robustness of our cell-type association results.

We identified an important technical issue for scRNA-seq and 
snRNA-seq studies of brain. scRNA-seq is readily done in mouse 
brain but is more difficult in larger and more fragile human brain 
neurons. Nearly all of the currently available human data have been 
generated using snRNA-seq. The isolated nuclei used in snRNA-
seq lack the cytoplasmic compartment and proximal dendrites, and 
there are systematic differences between the types and amounts of 
mRNA in the nucleus versus those in the cell soma27. To evaluate 
the effect of this issue, we analyzed multiple mouse and human 
datasets. We confirmed that transcripts destined for export to the 
synaptic neuropil28 were better captured by scRNA-seq and specifi-
cally depleted in snRNA-seq (Fig. 3a). This was important for the 
purposes of this study because synaptic neuropil transcripts are 
enriched for genetic associations with schizophrenia (P =  1.6 ×  10−4). 
This places an important caveat on the use of snRNA-seq to evaluate 
brain cell-type associations with schizophrenia, given that snRNA-
seq from human or mouse brain may not comprehensively capture 
the relevant transcriptome.

With these caveats in mind, we evaluated human snRNA-
seq datasets from mid-temporal cortex (Allen Institute for Brain 
Science, unpublished) and massively parallel snRNA-seq with 
droplet technology (DroNc-seq) datasets from the prefrontal cor-
tex and hippocampus26. Using hierarchical clustering on specific-
ity scores, we found that human and mouse cell types clustered 
together (Supplementary Fig. 11); level 1 cell types had greater 
similarity to the same cell type across species than to a different 
cell type in the same species. We confirmed enrichment of schizo-
phrenia SNP heritability in cortical pyramidal neurons (glutama-
tergic cells) and cortical interneurons (GABAergic cells) in two 
different human datasets (Fig. 3b). In the DroNc-seq dataset26, we 
confirmed enrichment in hippocampal pyramidal neurons (gluta-
matergic cells), along with greater enrichment in Reln-expressing 
GABAergic interneurons, as compared to those expressing Pvalb.  
In both human studies, oligodendrocyte precursor cells (OPCs) were 
significant or close to significance, but it was hard to judge whether 
this was related to a loss of neuronal-specific signal in snRNA-seq 
(note that OPCs showed stronger signal in OPCs in mouse snRNA-
seq versus that in scRNA-seq) (Fig. 2 and Supplementary Fig. 10d). 
In a small scRNA-seq study29, human adult and fetal cortical neu-
rons were significantly enriched for schizophrenia SNP heritability. 
These were likely pyramidal cells, but the small numbers of cells 
sequenced precluded further exploration. No significant enrich-
ments were found in another snRNA-seq study of a single human30, 
perhaps due to a lack of cellular diversity (data not shown). We are 

unaware of scRNA-seq and snRNA-seq data from human stria-
tum. The specificity of the human cortical signal for schizophrenia 
was confirmed in relation to the same set of brain-specific GWAS  
(Fig. 2d). In summary, all of the major findings from the KI dataset 
were replicated in independent mouse or human studies.

Cell-type enrichments of schizophrenia-associated gene sets.  
A major question in the field regards interpretation of the large and 
diverse gene sets that have been compellingly related to schizophre-
nia (Supplementary Table 1). These gene sets are highly significant, 
replicate well and have often been implicated in both common- and 
rare-variant studies. However, their implications for an experimen-
talist are unclear: what do these large sets of genes really tell us? 
These gene sets are large and could be expected to recapitulate the 
cell-type enrichments found above. However, all neurons have syn-
apses, and NeuN (the protein product of Rbfox3) is a widely used 
neuronal marker, so another possibility is that the RBFOX, PSD95 
and FMRP gene sets could simply be pan-neuronal.

We thus evaluated whether gene sets previously implicated in 
schizophrenia were specifically expressed in the KI level 1 brain cell 
types (using expression-weighted cell-type enrichment, EWCE)31. 
The inputs to EWCE were a list of genes (for example, FRMP-
interacting genes or genes intolerant to loss-of-function variation) 
and the same scRNA-seq cell type specificity matrix used in the 
MAGMA and LDSC analyses described above. Association with 
schizophrenia was not a direct input, although these data were 
incorporated indirectly (it was why a gene set was selected in the 
first place). However, these effects were subtle. For instance, there 
was a CLOZUK-significant genome-wide association hit in only 
7.0% of genes that interacted with FMRP versus 4.0% that did not 
interact with FMRP (using MAGMA gene-wise P values), and 
there was a CLOZUK-significant genome-wide association hit 
in only 4.1% of genes with a probability of being loss-of-function 
intolerant determined by the Exome Aggregation Consortium 
(ExAC pLI) >  0.9 versus 3.3% with low pLI. We also determined 
that overlap between gene sets was relatively low. For ten key gene 
sets (antipsychotic targets, CELF4, FMRP, high or low dN/dS, high 
pLI, NMDAR, PSD, PSD95 and RBFOX), of 45 pairs of correlations 
(count of intersection or union), only two correlations exceeded 
0.25 (RBFOX–CELF4, 0.31; and RBFOX–high pLI, 0.28); most of 
the other correlations were near 0 (data not shown).

First, pharmacologically defined molecular targets of antipsy-
chotics (the mainstay of treatment for schizophrenia) have been 
associated with schizophrenia32, and we found that targets of anti-
psychotic medication were associated with the same cell types as 
those for the schizophrenia genome-wide association results: neo-
cortical S1 pyramidal cells, MSNs and hippocampal CA1 pyramidal 
cells, whereas cortical interneurons were just above the significance 
threshold (Fig. 4a). Expanding these analyses, we found that other 
gene sets associated with schizophrenia were specifically expressed 
in schizophrenia-relevant cell types (Fig. 4b–d). The gene sets that 
were consistently associated with schizophrenia—intolerant to 
loss-of-function variation, NMDA receptor complex, postsynap-
tic density, PSD95 complex, RBFOX binding, CELF4 binding and 
FMRP-associated genes—all had more specific expression in neo-
cortical S1 and hippocampal CA1 pyramidal cells, MSNs from the 
dorsal striatum and cortical interneurons (with the exception of 
NMDA receptor complex genes). Because some of these gene sets 
are involved in diverse cellular functions, there were, as expected, 
associations with other level 1 cell types. For example, genes intol-
erant to loss-of-function variation had significantly greater expres-
sion in progenitor cells (dopaminergic neuroblasts, neuroblasts and 
embryonic GABAergic neurons). Notably, none of the gene sets pre-
viously associated with schizophrenia were pan neuronal. A prior 
study13 reported that expert-curated glial gene sets were enriched 
for schizophrenia associations. We confirmed that those gene sets 
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were significantly associated with glia (Supplementary Fig. 12),  
but we could not replicate the association of these gene sets with 
schizophrenia using MAGMA. Finally, we observed that gene sets 
previously associated with schizophrenia were substantially less 
associated with schizophrenia after controlling for the pyramidal 
neurons, MSNs and cortical interneurons (Supplementary Fig. 
13). Only loss-of-function intolerant, CELF4-binding and RBFOX-
binding gene sets remained significant after controlling for the 
cell-type enrichments. Our findings highlight that non-overlapping 
subsets of risk-associated genes each point to the same cell types. 
Indeed, gene set analysis results can be further subdivided accord-
ing to cell-type-specific expression. Improved methods are thus 
needed for gene set analysis that explicitly accounts for cell types, 
particularly given intensive efforts to conduct a census of the cel-
lular complexity of the human body.

Because neurological diseases are generally not genetically cor-
related with schizophrenia33, we evaluated the associations of level 
1 cell types with gene sets that were associated with neurological 

diseases. Genes associated with Alzheimer’s disease34,35 and multiple 
sclerosis36 were associated with microglia. Risk-associated genes for 
leukodystrophy37 were associated with oligodendrocytes (Fig. 4e). 
We analyzed genes associated with neurological phenotypes from 
the Human Phenotype Ontology (HPO) and subcellular localization 
data from the Human Protein Atlas (Supplementary Figs. 14–19)  
and found that these mostly targeted cell types distinct from those 
implicated in schizophrenia. For example, the HPO category 
“neural tube defect” was associated with neural progenitor cells 
(P =  0.0002) and that for “abnormal myelination” was associated 
with oligodendrocytes (P <  0.0001). We analyzed genes with weak 
or strong conservation between human and mouse (low or high  
dN/dS scores) and found that highly conserved genes were specific 
to some types of neuron (for example, serotonergic), whereas diver-
gent genes were associated to other cell types (for example, hypo-
thalamic glutamatergic). None of the schizophrenia-associated cell 
types showed unusually weak or strong evolutionary pressure on 
their coding sequences (Fig. 4f).
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Fig. 3 | Comparison of scRNA-seq and snRNA-seq, and evaluation of enrichment of common-variant CLOZuK schizophrenia genome-wide association 
results in brain snRNA-seq datasets from adult humans. a, Each bar represents a comparison between two datasets (X versus Y), with the bootstrapped 
z-scores representing the extent to which dendritically enriched transcripts28 have lower specificity for pyramidal neurons in dataset Y relative to that in 
dataset X. Larger z-scores indicate greater depletion of dendritically enriched transcripts, and red bars indicate a statistically significant depletion  
(P <  0.05, by bootstrapping). Supplementary Table 2 describes the studies. b, Human mid-temporal cortex brain cell type enrichment. Cortical pyramidal 
neurons and cortical interneurons show significant enrichment. Oligodendrocyte precursors also show enrichment that was not observed in the KI level 
1 data. The black line is the Bonferroni significance threshold (P <  0.05/(6 ×  8 comparisons)). c, Human prefrontal cortex and hippocampus brain cell 
type enrichments from ref. 26. These data show enrichment in cortical and hippocampal glutamatergic (i.e., pyramidal and granule) cells. There was 
also enrichment in cortical interneurons with the highest level in Reln- and Vip-expressing cells. The black line is the Bonferroni significance threshold 
(P <  0.05/(15 ×  8 comparisons)). d, Heat map of enrichment of diverse human GWAS with human mid-temporal cortex (AIBS), and human prefronal 
cortex and hippocampus (DroNc) level 1 brain cell types using MAGMA and LDSC. The CLOZUK results do not generalize across human diseases. MDD 
again shows significant enrichments in cortical interneurons. Common-variant genetic associations for Alzheimer’s disease were enriched in microglia. 
Bonferroni-significant results are marked with red borders (same thresholds as in b and c).
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Independence of genetic association between cell types. Finally, 
we assessed to what extent cell-type connections to schizophrenia 
were due to shared gene expression between cell types. For instance, 
the association of cortical interneurons with schizophrenia was 
weaker than that for MSNs: we could ask whether these were inde-
pendent connections to schizophrenia. Alternatively, given that both 
are GABAergic neurons, we could ask whether both associations 
were being driven by a common set of genes. We tested this by using 
resampling without replacement: if the interneuron enrichment was 
driven solely by overlapping genes with MSNs, then an equivalent 
level of interneuron association would be found if the schizophrenia 
association scores of genes within each MSN specificity decile were 
randomized (Supplementary Fig. 20). We performed 10,000 resam-
plings for each level 1 cell type while controlling for all four of the 

significantly associated cell types (Fig. 4a). We found that MSNs, 
cortical interneurons and hippocampal CA1 pyramidal neurons 
were independently associated with schizophrenia. However, the 
association with somatosensory pyramidal neurons was largely due 
to shared expression with hippocampal CA1 pyramidal neurons.  
We confirmed this by using conditional analysis (Supplementary 
Fig. 21a). We then tested whether each cell type remained significant 
after conditioning on the three other significant cell types together. 
Notably, only MSNs remained significantly associated with schizo-
phrenia (Supplementary Fig. 21b), indicating that the association 
of MSNs with schizophrenia is independent from that of pyramidal 
neurons and cortical interneurons.

To evaluate whether the main sources of enrichment signal in dif-
ferent cell types were from overlapping genes, we used a qualitative  
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measure. We plotted the overlap of the top 1,000 genes associated 
with schizophrenia (MAGMA gene-wise P values) that were also in 
the top decile of specificity scores for each of the four main cell types 
(Fig. 5b). About half of the schizophrenia-associated genes enriched 
in pyramidal cells and MSNs were shared, but those that conferred 
risk enrichment in interneurons were, to a larger extent, exclusive. 
We then evaluated enrichment of gene sets previously associated 
with schizophrenia (RBFOX-, CELF4- or FMRP-binding genes, 
loss-of-function intolerant genes, synaptic genes and dendritically 
transported genes) and genes involved in dopaminergic signaling 
(Methods) in the different areas of Fig. 5b by using a hypergeomet-
ric test. The most associated RBFOX-binding genes were enriched 
in CA1 pyramidal cells; loss-of-function intolerant genes and genes 
related to dopamine signaling were specifically enriched in MSNs 
(Fig. 5c). A subset of synaptic genes associated with schizophre-
nia was shared by all cell types. These findings show that neuronal 
classes express a combination of overlapping and non-overlapping 
functional sets of risk genes.

Discussion
A major issue in schizophrenia genomics is the meaning of the 
many genome-wide association findings: how do we interpret the 
hundreds of common-variant associations? Similarly, many sets of 
genes have been compellingly associated with schizophrenia: what 

are these diverse functional findings telling us? Thus, we attempted 
to connect human genomic findings for schizophrenia to specific 
brain cell types, as defined by their scRNA-seq expression profiles: 
to what specific brain cell types do the common-variant genetic 
findings for schizophrenia best fit? Other studies have addressed 
this question3,9,14, but by using gene expression data based on aggre-
gates of millions of cells. As described more fully in the Methods 
(“Rationale”), we used scRNA-seq data to answer this question.  
We set a high bar—we required that the connections to cell types be 
identified using two different methods and exceed an appropriately 
rigorous statistical threshold.

The results were not pan-neural, pan-neuronal or in cell types 
that were prominent in early development. We found clear connec-
tions to just 4 of 24 main brain cell types: MSNs, pyramidal cells in 
hippocampal CA1, pyramidal cells in the somatosensory cortex and 
cortical interneurons. Most of the strong results found in the mouse 
data were replicated in external mouse data and in the more-limited 
human datasets. Of note, many of the diverse gene sets (for example, 
antipsychotic drug targets or genes that interacted with the FMRP 
or RBFOX proteins) that robustly associated with schizophrenia 
connected to the same cell types. Our results suggest that these dis-
crete cell types are central to the etiology of schizophrenia, and they 
provide an empirical rationale for deeper investigation of these cell 
types in regard to the basis of schizophrenia. These results can be 
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used to guide in vivo studies and in vitro modeling (for example, 
patient-derived neurons from induced pluripotent stem cells) and 
can provide a basis for analyzing how different risk genes interact to 
produce the symptoms of schizophrenia.

Our results also suggest that snRNA-seq analysis of neurons 
leads to systematic underrepresentation of dendritically exported 
mRNA species. We hypothesize that this is due to destination-
specific differences in rates of mRNA decay38. Our data on single-
nucleus versus single-cell mRNA capture warrants caution when 
using single-nuclei datasets for the study of neuronal disorders or 
processes. This fact should be taken into consideration in the design 
or analysis of future large-scale sequencing efforts.

There are several important caveats, as described more fully in 
the Methods (“Limitations”, including discussion and analyses of 
gene conservation). Despite our use of multiple statistical meth-
ods and efforts to identify and resolve any spurious explanations 
for our findings, our work has to be considered in light of inevi-
table limitations. Although the KI scRNA-seq data cover a broad 
range of brain regions thought to be relevant to the neurobiology of 
schizophrenia, extensive coverage of cortical and striatal develop-
ment is lacking at present (gestation, early postnatal or adolescence).  
The currently available functional genomic data in human brain 
are limited but improving rapidly via PsychENCODE39 and similar 
efforts; however, precisely how schizophrenia GWAS signals impact 
cell-specific gene expression is not yet a solved problem. Finally, the 
genetic signals we captured were reflected in the expression levels of 
hundreds of genes. It is certainly possible for a gene to play an impor-
tant role in schizophrenia and yet not be in one of the cell types we 
implicated. For example, genetic polymorphisms in C4A appear to be 
etiologically involved in schizophrenia7, but the expression of C4A is 
highest in astrocytes, vascular leptomeningeal cells and microglia. We 
were thus careful with our conclusions: we can implicate a cell type 
(for example, MSNs show positive evidence), but it is premature to 
exclude cell types for which we do not have data or those with dissim-
ilar function or under selection pressure between mouse and human.

In sum, our results support a parsimonious hypothesis: the com-
mon-variant genome-wide association results for schizophrenia 
point to a limited set of brain cells, and that subsets of these genes—
the gene sets associated with schizophrenia (including antipsychotic 
medication targets)—each point at the same cell types.

URLs. Expression-weighted cell-type enrichment (EWCE),  
https://github.com/NathanSkene/EWCE; Linnarsson lab data, 
http://linnarssonlab.org/data; Mouse Genome Informatics, Jackson 
Laboratory, http://www.informatics.jax.org/homology.shtml; LDSC, 
https://github.com/bulik/ldsc/wiki; PGC results, https://www.med.
unc.edu/pgc/results-and-downloads; AlzGene database, http://www.
alzgene.org/TopResults.asp; GREAT, http://great.stanford.edu/pub-
lic/html; Hjerling-Leffler lab website, http://www.hjerling-leffler-lab.
org/data/scz_singlecell; Human Phenotype Ontology, http://comp-
bio.charite.de/hpoweb; MAGMA_Celltyping, https://github.com/
NathanSkene/MAGMA_Celltyping; NMDA Receptor Complex 
Genes, http://www.genes2cognition.org/db/GeneList/L00000007.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0129-5.
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Methods
Mouse-to-human gene mapping. We used the expert curated human–mouse 
homolog list (Mouse Genome Informatics, The Jackson Laboratory; see URLs, 
version of 11/22/2016). Only genes with a high-confidence, 1:1 mapping were 
retained. This is discussed further in the Supplementary Note.

Calculation of cell-type expression specificity. A key metric used for our cell-type 
analyses was the specificity (proportion of expression) for a given gene. This metric 
was calculated separately for each single-cell dataset. This is a measure of cell-type 
specificity scaled so that a value of 1 implies that the gene is completely specific to 
a cell type and a value of 0 implies the gene is not expressed in that cell type. It was 
calculated using the ‘generate.celltype.data’ function of the EWCE package 
 (see URLs). See Supplementary Note for further details.

Thresholding of low-expressed transcripts. Because sg,c (specificity for gene g in 
cell type c) is independent of the overall expression level of a gene, it was desirable 
to exclude genes with very low or sporadic gene expression levels, as a small 
number of reads in one cell could falsely make that gene appear to be a highly 
specific cell marker. Direct thresholding of low-expressed genes was not ideal for 
performing this, as thresholds need to be set individually for each dataset, and 
some individual cells can show exceptionally and anomalously high expression 
of the sporadically expressed gene. We reasoned that all of the genes we wanted 
to include in the study should be differentially expressed in at least one level 2 
cell type included in the study. We thus excluded sporadically expressed genes via 
analysis of variance (ANOVA) with the level 2 cell-type annotations as groups and 
excluded all genes with P >  0.00001. Gene filtering was performed separately for 
each single-cell dataset; notably though, the KI dataset was filtered as a merged 
superset. A consequence of this (and of differences in sample preparation and 
sequencing) was that different genes were used, for example, in the analysis of the 
KI superset than were used for the Habib et al. (Mouse Hippocampus Div-Seq) 
dataset24. For datasets for which level 2 cell-type annotations were not available 
(for example, the Allan Brain Institute human cortex dataset), we used the same 
approach but with level 1 cell-type annotations instead.

Linkage disequilibrium score regression (LDSC) and partitioning SNP 
heritability. To partition SNP heritability using LDSC (see URLs)9, it was necessary 
to pass LDSC annotation files (one per chromosome) with a row per SNP and a 
column for each sub-annotation (1 =  a SNP is part of that sub-annotation). To map 
SNPs to genes, we used the dbSNP SNPContigLocusId file (build 147 and hg19/
NCBI Build 37 coordinates). All SNPs not annotated in this file were given a value 
of 0 in all sub-annotations. Template annotation files obtained from the LDSC 
Github repository were used as the basis for all cell-type and gene-set annotations 
(“cell_type_group.1*”). Only SNPs present in the template files were used. If an 
annotation had no SNPs, then 50 random SNPs from the same chromosome were 
selected as part of the annotation (if no SNPs are selected, then the software fails to 
calculate SNP heritability).

Annotation files were created for each cell type for which we applied 
partitioned LDSC. Twelve sub-annotations were created for each cell type. 
The first represented all SNPs that mapped onto named regions that were not 
MGI-annotated genes or that mapped onto a gene which did not have a 1:1 
mouse:human homolog. The second contained all SNPs that mapped onto genes 
not expressed in a cell type. The other ten sub-annotations were associated with 
genes with increasing levels of expression specificity for that cell type. To assign 
these, the deciles of sg,c were calculated over all values of g (separately for each value 
of c) to give ten equal length sets of genes. These were then mapped to SNPs, as 
described above. To partition SNP heritability among the gene sets (not the cell 
types), a single set of annotation files was created with each of the gene sets used as 
a sub-annotation column.

LDSC was then run using associated data files from phase 3 of the 1000 
Genomes Project40. We computed LD scores for cell-type annotations by using a 
1-cM window (–ld-wind-cm 1). As recommended (LDSC Github Wiki, URLs), 
we restricted the analysis to using Hapmap3 SNPs and, as in the original report9, 
excluded the major histocompatibility complex (MHC) region due to its high gene 
density and exceptional LD. The LDSC ‘munge_sumstats.py’ script was used to 
prepare the summary statistics files. The SNP heritability was then partitioned 
to each sub-annotation. We used the LD weights calculated for HapMap3 SNPs, 
excluding those for the MHC region, for the regression weights available from the 
Github page (files in the ‘weights_hm3_no_hla’ folder).

For the LD score files that were used as independent variables in LD score 
regression, we used the full baseline model9 and the annotations described above. 
We used the ‘–overlap-annot’ argument and the minor-allele frequency files 
(‘1000G_Phase3_frq’ folder via the ‘–frqfile-chr’ argument).

Partitioned LDSC computes the proportion of SNP heritability associated with 
each annotation column while taking into account all other annotations. Based 
on the proportion of total SNPs in an annotation, LDSC calculates an enrichment 
score and an associated enrichment P value (one-tailed, as we were only interested 
in annotations showing enrichments of SNP heritability). All figures showing 
partitioned LDSC results show P values associated with the enrichment of the most 
specific decile for each cell type.

Cell-type identification using MAGMA. We used MAGMA (v1.04)19, a 
leading program for gene set analysis41, to evaluate the association of gene-level 
schizophrenia-association statistics with cell-type-specific expression under the 
hypothesis that, in relevant cell types, genes with greater cell-type specificity would 
be more associated with schizophrenia. Gene-level association statistics were 
obtained using MAGMA (window size 10 kb upstream and 1.5 kb downstream 
of each gene; see below for discussion of window size), using an approach based 
on Brown’s method42 (model: ‘snpwise-unweighted’). This approach allows one to 
combine P values in the specified windows surrounding each gene into a gene-level 
P value, while accounting for LD (computed using the European panel of 1000 
Genomes Project phase 3)40.

The tissue-specific expression metric for each gene in each cell type was 
obtained by dividing the gene expression level in a particular cell type by the 
sum of the expression of the gene in all cell types (see sg,c, defined above). The 
distributions of sg,c were complex (point mass at zero expression, substantial right-
skewing). For each cell type, we transformed s into 41 bins (0 =  not expressed, 
1 =  below 2.5th percentile, 2 =  2.5–5th percentile, … , 40 =  above 97.5th percentile), so 
that each cell type would be comparable.

MAGMA was then used to test for a positive association (one-sided test) 
between the binned fractions in each cell type and the gene-level associations 
(option–gene-covar onesided). For a given mouse or human brain cell type, this 
tested whether increasing tissue specificity of gene expression was associated with 
increasing common-variant genetic findings for schizophrenia using information 
from all of the genes. By default, the linear regression performed by MAGMA is 
conditioned on the following covariates: gene size, log(gene size), gene density 
(representing the relative level of LD between SNPs in that gene) and log(gene 
density). The model also takes into account gene–gene correlations. For the 
conditional analysis, we used the condition modifier of the ‘gene-covar’ parameter 
to condition on each of the significant cell types.

Random permutations of MAGMA. For the analysis in Supplementary Fig. 7, we 
randomly permuted gene labels of gene-level association statistics of MAGMA and 
looked for cell-type association with schizophrenia using 1,000 permutations. We 
observed a mean of 24.8 significant results across cell types at P <  0.05, indicating 
that MAGMA was conservative using our approach (50 significant results expected 
by chance).

Schizophrenia association using alternative cell-type-specificity method. We 
tested another recent approach to associate cell types with traits using differentially 
expressed genes22. We computed a normalization factor for each single cell using 
the scran R package43 by using the 50% of the genes with mean expression higher 
than the median. The normalization factors were computed after clustering cells 
using the scran ‘quickcluster’ function to account for cell-type heterogeneity. We 
then performed 24 differential expression analyses using BPSC44, testing each cell 
type against the 23 other cell types with the normalization factors as covariate. For 
each cell type, we then selected the 10% most-upregulated genes and created bed 
files with the coordinates of these genes extended by 100 kb upstream and 100 kb 
downstream. SNPs of the baseline model from Finucane et al.9 that were located 
in the top 10% of the genes were used to create a cell-type-specific annotation 
that was added to the ‘baseline’ model. We then used LDSC9 to test for association 
between the cell-type-specific annotations and schizophrenia using a one-sided  
P value based on the coefficient z-score from the output of LDSC.

Enrichment analyses of gene sets and antipsychotic drug targets. EWCE  
(see URLs)31 was used to test for cell types that showed enriched expression of 
genes associated with particular schizophrenia-associated gene sets. These analyses 
used the same specificity (s) values for the KI level 1 data that were used for the 
MAGMA and LDSC analyses. EWCE was run with 10,000 bootstrap samples. 
Enrichment P values were corrected for multiple testing using the Bonferroni 
method calculated over all cell types and gene lists tested. EWCE returned  
a z-score that assessed s.d. from the mean. Values <  0 (depletion of expression) 
were recoded to 0.

Schizophrenia common-variant association results. The schizophrenia GWAS 
results were from the CLOZUK and PGC studies3,20. CLOZUK is the largest 
currently obtainable GWAS for schizophrenia (40,675 cases and 64,643 controls), 
and the authors identified ~150 genome-wide significant loci. It includes the 
schizophrenia samples from earlier PGC papers. For selected analyses, we also 
included the PGC schizophrenia results from the Nature 2014 report (see URLs)3. 
This paper included 36,989 cases and 113,075 controls and identified 108 loci 
that were associated with schizophrenia. Results from the published PGC and 
CLOZUK studies were qualitatively similar, with the CLOZUK data generally 
showing increased significance owing to its larger sample size.

Comparison of GWAS results for other traits. We included comparisons for a 
selected set of brain-related traits, as well as height as a negative control. As power 
to identify cell types is directly proportional to the sample size of the GWAS, 
we only included traits with at least 20,000 samples that discovered at least 20 
genome-wide significant loci. The genome-wide assoication results were from the 

NATuRE GENETiCS | www.nature.com/naturegenetics

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.

http://www.nature.com/naturegenetics


ArticlesNATuRe GeNeTicS

indicated sources: schizophrenia3 from the PGC, Alzheimer’s disease34, educational 
attainment45, IQ46, MDD from the PGC (unpublished), Parkinson’s disease47 and 
height48.

Test of cell-type association differences between traits. We tested whether the 
beta coefficient in MAGMA was significantly different between two traits for each 
cell type, using the approach described in Paternoster et al.49. We first computed a 
z-score for each cell type: = β β

β β

−

+
Z

SE SE
1 2

1
2

2
2

, where β1 and β2 are the SNP heritability 

enrichments for traits 1 and 2 (or beta coefficients in MAGMA) and SEβ1 and SEβ2 
are the s.e.m. values. A two-sided P value was then computed based on the z-score 
using the R ‘pnorm’ function.

Gene sets associated with schizophrenia. The gene set results for schizophrenia 
are summarized in Supplementary Table 1. For CELF4-binding genes, we used 
genes with iCLIP occupancy >  0.2 from Supplementary Table 4 in ref. 50. For 
FMRP-binding genes, we used genes from Supplementary Table 2a in ref. 12. 
Genes intolerant to loss-of-function variation were from the Exome Aggregation 
Consortium (pLI >  0.9)10. Genes containing predicted miR-137 target sites were 
from http://www.microrna.org. NMDA receptor complex genes came from Genes-
to-Cognition database entry L0000000751 (see URLs). The human postsynaptic 
density gene set was from Supplementary Table 2 in ref. 52. The PSD95 complex 
came from Supplementary Table 1 in ref. 53, using all genes marked with a cross in 
the ‘PSD-95 core complex’ column. For RBFOX binding, we took all genes with 
RBFOX2 count >  4 or summed RBFOX1 and RBFOX3 >  12 from Supplementary 
Table 1 in ref. 54. For antipsychotic drug targets, we used a gene list provided by 
G.B. and H.A.G., as reported in ref. 32. The oligodendrocyte and astrocyte gene lists 
came from Supplementary Table 4 in ref. 13. All EWCE P values were corrected with 
the Benjamini–Hochberg method.

Gene sets for neurological disorders, human phenotype ontology and dN/dS.  
For multiple sclerosis, we used results from the largest available GWAS (the 
Multiple Sclerosis Genomic Map); we used the genes listed in the Supplementary 
Table of ref. 36. For Alzheimer’s disease, we used the top results from the AlzGene 
database35 (see URLs), as well as genome-wide significant genes34. For genes 
associated with leukodystrophy (HP:0002415) we used the Human Phenotype 
Ontology37 (see URLs). For amyotrophic lateral sclerosis, we used the top results 
from the ALSGene database (see URLs). For epilepsy, migraine and stroke, we used 
the EBI GWAS catalog. For the Human Phenotype Ontology (HPO) gene sets, we 
downloaded the ‘ALL_SOURCES_ALL_FREQUENCIES_phenotype_to_genes.
txt’ file from build 133. To obtain the genes with the top 500 highest/lowest dN/dS 
between humans and mice, we obtained the dN and dS values through BioMart.

Gene sets associated with subcellular localization. Subcellular localization data 
were downloaded from the Human Protein Atlas website (HPA, v.17; https://www.
proteinatlas.org/)55. Only gene lists with >  100 genes were used. Lysosomal genes 
were downloaded from the Human Lysosome Gene Database56. Mitochondrial 
genes were obtained from Human MitoCarta2.057. Axonal (adult) and axonal 
(embryonic day E17) were obtained from a study which used axon-TRAP-
RiboTags to capture the mRNAs from retinal ganglion cell axons that projected 
to the superior colliculus (Supplementary Table 1 in ref. 58). Presynaptic genes 
came from Supplementary Table 1 in ref. 59. Synaptic vesicle genes came from 
Supplementary Table 1 in ref. 60.

Depletion of dendritically enriched transcripts in nuclei datasets. Dendritically 
enriched transcripts were obtained from Supplementary Table 10 of ref. 28. This  
list was produced from pyramidal cells from rat hippocampus, and human  
1:1 homologs were obtained. We refer to this set of genes as Ldendritic. To enable  
direct comparisons between datasets, all datasets were reduced to contain  
a common set of six KI level 1 cell types: pyramidal neurons, interneurons,  
astrocytes, interneurons, microglia and oligodendrocyte precursors. For the  
KI dataset, we used S1 pyramidal neurons. The specificity metric (denoted as  
sg,c) was recalculated for each dataset by using this reduced set of cell types.  
Comparisons were then made between datasets (denoted in the graph with the  
format ‘X versus Y’). We denoted the mean pyramidal neuron specificity scores 
for dendritically enriched genes in dataset X as =SD X L Pyramidal, ,dendritic

. We then 
obtained the difference in pyramidal specificity for list L between two datasets as 

= −= =D S SX Y D X L Pyramidal D Y L Pyramidal, ,L , , , , . We then calculated values of wenriched 
gene list, with the genes randomly selected from the background gene set.  
We denoted the nth random gene list as Rn. The mean and s.d. of the bootstrapped 
DX,Y,L values were denoted as μDX Y R, ,

 and σDX Y R, ,
, respectively. The depletion z-score 

was then calculated as: =
μ

σ

−
ZX Y

D

, ,Ldendritic

X Y Ldendritic DX Y R

DX Y R

, , , ,

, ,
. A large positive z-score 

thus indicated that dendritically enriched transcripts were specifically depleted 
from pyramidal neurons from dataset Y relative to dataset X.

Conditional cell-type enrichments. Gene-association z-scores for schizophrenia 
were calculated in MAGMA as described above. To enable randomization of the 
z-scores and recalculation of the associations to be done programmatically, these 

were then loaded into R, and associations with disease were calculated within this 
environment without external calls to MAGMA. All genes within the extended 
MHC region (chromosome 6; 25–34 Mb) were removed due to its confounding 
effects. We controlled for gene size and gene density by regressing out the effect of 
the NSNPS and NDENSITY parameters (and the log of each) on the z-score. To 
ensure that a meaningful number of genes were randomized within each group, 
associations were calculated over deciles rather than the smaller percentile bins 
used earlier with MAGMA. Probabilities of association were calculated using the 
lmFit and ebayes functions from the limma package, to enable rapid computation. 
We denoted the set of cells studied as c, such that ci represented the ith cell type. 
The original z-scores were denoted z, such that zi was the z-score of the ith gene, 
whereas the randomized z-scores were denoted as R. The set of genes in the ith 
specificity decile of the controlled cell type, cx and the jth specificity decile of target 
cell type, cy were denoted Si j

x y
,
,

 and thus ⋃ ∈ Sk C i k
x y
,
, contained all of the genes in the 

ith specificity decile of cell type cx.
The basis of the approach (Supplementary Fig. 23) was to randomize the 

z-scores with respect to the specificity deciles of the target cell type cy, but not with 
respect to the specificity deciles of the controlled cell type cx. Thus, for each of the 
deciles indexed by i, we randomly resampled without replacement the z-scores 
such that =

∪ ∪∈ ∈∈ ∈
R Z{ } { }g g S g g Sk C i k

x y
k C i k

x y
,
,

,
,  and yet ≠R Zg g . In practical terms, this 

would mean that if we controlled for MSNs and targeted cortical interneurons, 
then the mean z-score in the 10th MSN decile would remain the same but would 
be different in cortical interneurons; the question being tested was the degree 
to which this equated to total randomization in terms of the schizophrenia 
association found in cortical interneurons.

The baseline association values shown in the leftmost column in Fig. 4a 
(described as Pcelltypey,baseline) were calculated using Z. The values of Pcelltypey,celltypex 
(probability of cell type y being associated with schizophrenia controlling for 
cell type x) were calculated using intermediate probabilities: 10,000 association 
P values are calculated for resampled values of R. We selected the 500th 
lowest of these P values (equivalent to the value that the baseline association 
probability would need to exceed to be declared independently associated 
with a probability of 95%) and denoted this px y

bootstrap
,

. The value of Pcelltypey,celltypex 
was then calculated as exp(log(Pcelltypey,celltypex) – log(px y

bootstrap
,

)). If the value of 
Pcelltypey,celltypex >  1 (indicating that the randomized samples were actually more 
significantly associated than was found to be the case), then it was set to 1. We 
were also able to evaluate whether the probability of schizophrenia association 
in cell type y was greater than would be expected based solely on the expression 
in cell type x by asking whether the actual association P value was <  95% of the 
bootstrapped P values. As expected, all self–self comparisons were found to 
be nonsignificant by this metric (i.e., after accounting for expression in CA1 
pyramidal neurons, CA1 pyramidal neurons were no longer significant). In 
Fig. 4a, a red box was placed around the CA1 pyramidal versus somatosensory 
pyramidal square because this was the only comparison that involved the 
four significantly associated cell types in which controlling for expression of a 
different cell type abolished the enrichment.

Venn diagram enrichments. The Venn diagram shown in Fig. 5 was generated 
by selecting the top 1,000 genes most associated with schizophrenia based on 
the MAGMA gene-specific z-scores. All genes within the extended MHC region 
(chromosome 6; 25–34 Mb) were dropped from the analysis. We controlled 
for gene size and gene density by regressing out the effect of the NSNPS and 
NDENSITY parameters (and the log of each) on the z-score. We then took 
the intersection of the top 1,000 genes with the top decile for each of the four 
significantly associated level 1 cell types and generated the Venn diagram 
using the R ‘VennDiagram’ package. The dopamine gene set included all genes 
associated with any of the following Gene Ontology (GO) terms: GO:0090494 
(“dopamine uptake”), GO:0090493 (“catecholamine uptake”), GO:0051584 
(“regulation of dopamine uptake involved in synaptic transmission”), 
GO:0032225 (“regulation of synaptic transmission, dopaminergic”), GO:0001963 
(“synaptic transmission, dopaminergic”) and GO:0015872 (“dopamine 
transport”). The synaptic gene list comprised a combination of three published 
gene lists: the human postsynaptic density52; presynaptic active vesicle docking 
sites59 and synaptic vesicle genes60. For the presynaptic gene list, the data came 
from Supplementary Table 1 of ref. 59; the geneInfo numbers were converted 
from genInfo accessions to Refseq IDs using Entrez Batch then from Rat RefSeq 
to HGNC symbols keeping only 1:1 homologs. The synaptic vesicle gene list 
came from Supplementary Table 1 of ref. 60 and were converted from Rat RefSeq 
to HGNC symbols using only 1:1 homologs. Enrichment probabilities were 
calculated using a hypergeometric test against a background set of all MGI genes 
with 1:1 homologs in human (as described above).

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. An R package that can be used for running the cell type 
association analysis can be obtained from https://github.com/NathanSkene/
MAGMA_Celltyping.
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Data availability. The RNA-seq data used in this report can be obtained from 
the Hjerling-Leffler lab website (see URLs), and they include the KI scRNA-seq 
superset, processed versions of the human and mouse snRNA-seq DroNc-seq 
data, and the Allan Brain Institute human snRNA-seq data. The specificity 
values for the KI scRNA-seq superset are included in Supplementary Table 4. 
The dataset has also been made available in the ‘MAGMA_Celltyping’  
R package (see URLs).
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    Experimental design
1.   Sample size

Describe how sample size was determined. We used summary statistics from the largest available schizophrenia GWAS. We 
only used data from other GWAS studies with over 20000 subjects and 10 genome 
wide significant loci. We used the largest available high quality single cell 
transcriptome dataset.

2.   Data exclusions

Describe any data exclusions. Glial cells not from cortex were excluded from the main analyses as they are 
shared across brain regions but may have been clustered differently

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

We reproduced the core findings across multiple human and mouse single cell 
transcriptome datasets. We also replicated it using a smaller Schizophrenia GWAS 
dataset.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Not applicable. All GWAS summary statistics and single cell transcriptome data 
used were associated with independent publications. No other samples / 
organisms or participants used which could have been subject to randomisation.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Not applicable. All GWAS summary statistics and single cell transcriptome data 
used were associated with independent publications; nonetheless, as these 
datasets were generated prior to this study being conceived, they were defacto 
generated in a 'blind' manner.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

LDSC (https://github.com/bulik/ldsc).  
MAGMA v1.05 (https://ctg.cncr.nl/software/magma) 
R 
EWCE (R package): https://github.com/NathanSkene/EWCE 
MAGMA_Celltyping (R package): available at https://github.com/NathanSkene/
magma_celltyping upon publication

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

Not applicable. No unique materials were used in this study.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

Not applicable. No antibodies were used in this study.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. Not applicable. No cell lines were used in this study.

b.  Describe the method of cell line authentication used. Not applicable. No cell lines were used in this study.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

Not applicable. No cell lines were used in this study.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

Not applicable. No cell lines were used in this study.
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

Not applicable. No animals were used in this study.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Not applicable. No human research participants were used in this study.


	Genetic identification of brain cell types underlying schizophrenia
	Results
	Cell-type specificity of gene expression. 
	Cell-type specificity of schizophrenia genetic associations. 
	Replication of results in additional single-cell datasets. 
	Cell-type enrichments of schizophrenia-associated gene sets. 
	Independence of genetic association between cell types. 

	Discussion
	URLs. 

	Methods
	Acknowledgements
	Fig. 1 Specificity metric calculated from single-cell transcriptome sequencing data can be used to test for increased burden of schizophrenia-SNP heritability in brain cell types.
	Fig. 2 Evaluation of enrichment of common-variant CLOZUK schizophrenia GWAS results in the KI brain scRNA-seq dataset from mouse.
	Fig. 3 Comparison of scRNA-seq and snRNA-seq, and evaluation of enrichment of common-variant CLOZUK schizophrenia genome-wide association results in brain snRNA-seq datasets from adult humans.
	Fig. 4 Cell-type enrichment of gene sets associated with schizophrenia, neurological disorders and the evolutionary divergence between human and mouse.
	Fig. 5 CA1 pyramidal neurons, medium spiny neurons and cortical interneurons are independently associated with schizophrenia, and distinct molecular pathways contribute to each cell type.




